

COLLOIDAL Liquid Fertilizers

"MEASURES, efficiency and uptake of HUMA GRO[®] colloidal nutrition vs. conventional fertilizers in certain types of soils"

PERFORMANCE TRIAL OF HUMA GRO [®]SUPER K™ FERTILIZER

WITH MICRO CARBON NUTRITION IN RED GLOBE/FREEDOM,

SHIFT 1, VALVE I3

HUMA Colored KGRO

Previously fertilized FIELD DATA

- CROP: VINE
- VARIETY: Red/Freedom
- AGE: 24 months
- PHENOLOGY Formation
- DOSES OF POTASSIUM APPLIED HUMA GRO®

- DOSES OF POTASSIUM potassium nitrate + 35.19 kg potassium sulfate) CONVENTIONAL 2.48 ha valve
- : 15.6 (2.4 LITERS) of HUMA GRO® SUPER K™/valve 1.48 ha
- : 15.6 (16.74 kg

- EXPERIMENTAL DOSE: Shift 01 Valve I3 (HUMA GRO®)
- (CONTROL PLOT): Shift 01 Valve H3

HUMA CAGRO

GOALS

- To show the effective potassium uptake after applying HUMA GRO[®] SUPER K[™], with *Micro Carbon Technology*[®], as measured after some hours of being applied using a drip system to demonstrate the improved cation-exchange capacity in the soil-plant solution.
- However, to illustrate the activity of the ions in the soil solution, we measured the ions with the highest incidence NO3, K and Ca.
- The behavior of the soil solution was also monitored once the fertilizers were applied.
- (EC and pH)

SAMPLING AND SAMPLE READING METHOD

Preparation of saturated paste -Picture

- Saturated paste preparation method:
- About 150 ml of soil (volume) were extracted and put into a beaker, adding 150 ml of distilled water.
- The mixture was shaken for 15 minutes and then left to settle for 5 minutes more so as to extract the material to be measured.

HUMAD

- GRO

Saturated paste extract

Samples were collected before applying the fertilizers in both valves

The leaves were randomly extracted from the middle section of the loaders

Collected leaves were prepared by removing most of the leaf blade and leaving the ribs and the petiole to extract the sap.

HUMA CAGRO

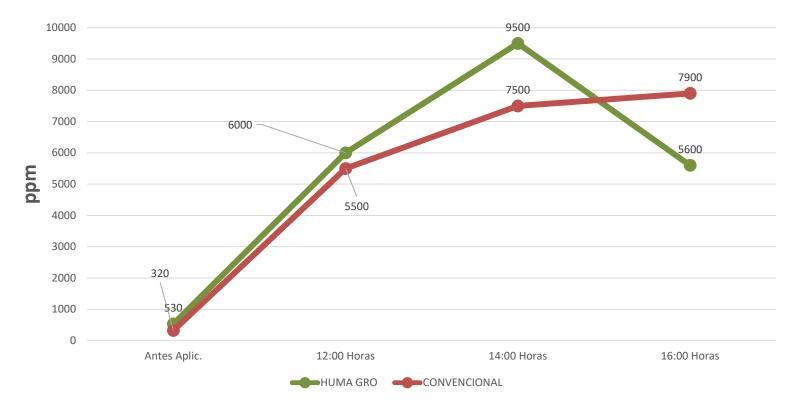
Horiba equipment calibration with the respective buffer

The leaves were chopped and then pressed to extract the sap

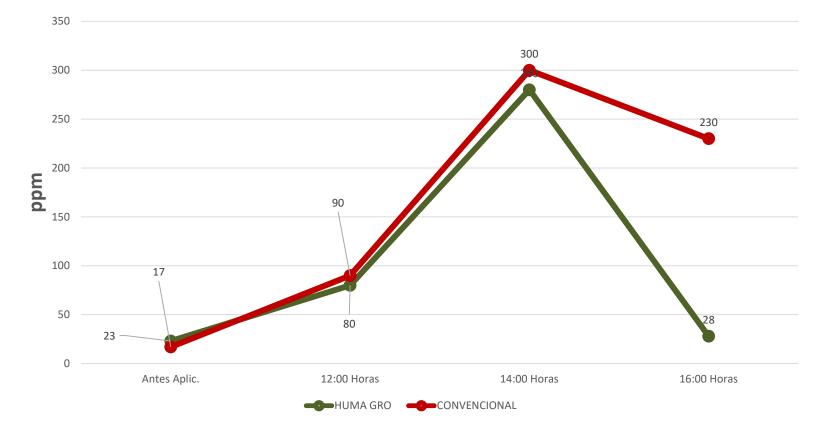
The sap was poured into the Horiba gauges to determine ion concentration

Sap ion concentration was measured using a method called spectrometry

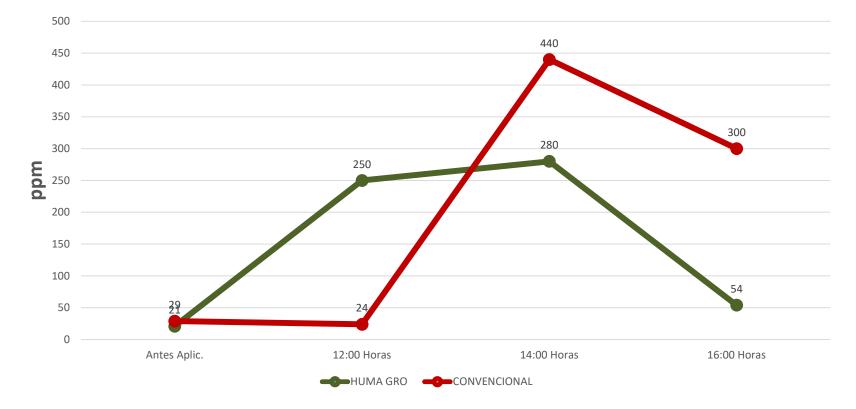
RESULTS:


In saturated soil paste

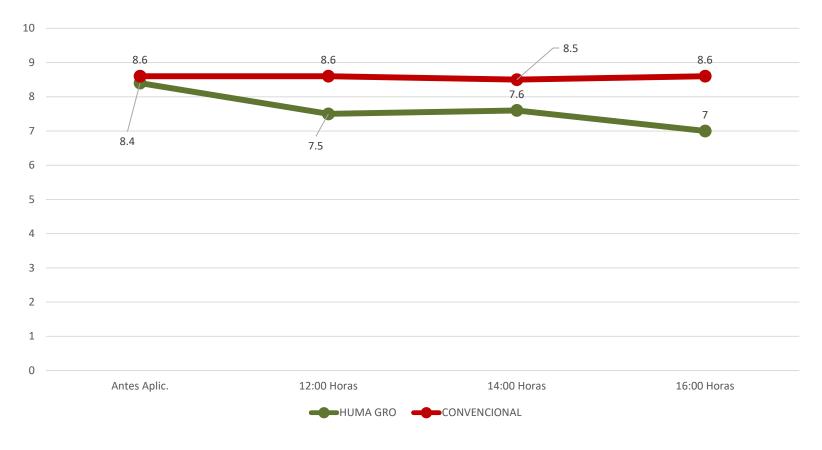
lon	Lectura pasta saturada antes y despues HUMA GRO				Lectura pasta saturada antes y despues Convencional			
	Antes	12:00 Horas	14:00 Horas	16:00 Horas	Antes	12:00 Horas	14:00 Horas	16:00 Horas
NO3	530	6000	9500	5600	320	5500	7500	7900
K+	23	80	280	28	17	90	300	230
Са	21	250	280	54	29	24	440	300
Na	28	200	500	150	50	29	750	870
Ph	8.4	7.5	7.6	7	8.6	8.6	8.5	8.6
CE	0.3	0.3	0.56	0.76	0.49	0.56	1.14	1


SATURATED SOIL PASTE EXTRACT

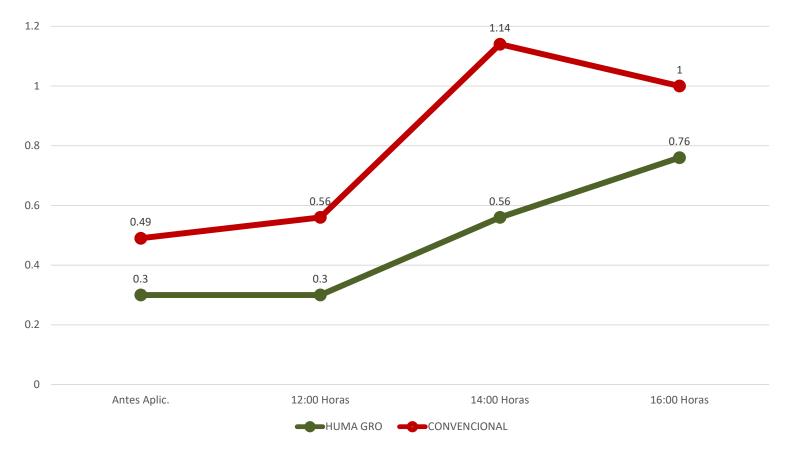
Reading of NO3 in saturated paste every two hours after fertilization



Reading of K+ in saturated paste every two hours after fertilization

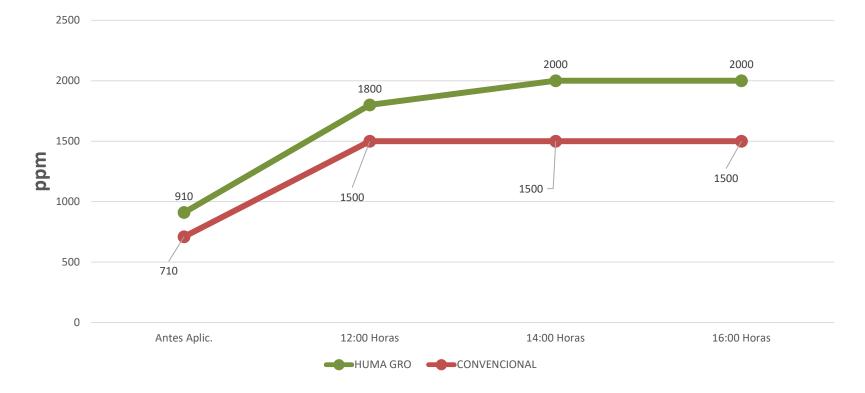


Reading of Ca++ in saturated paste every two hours after fertilization



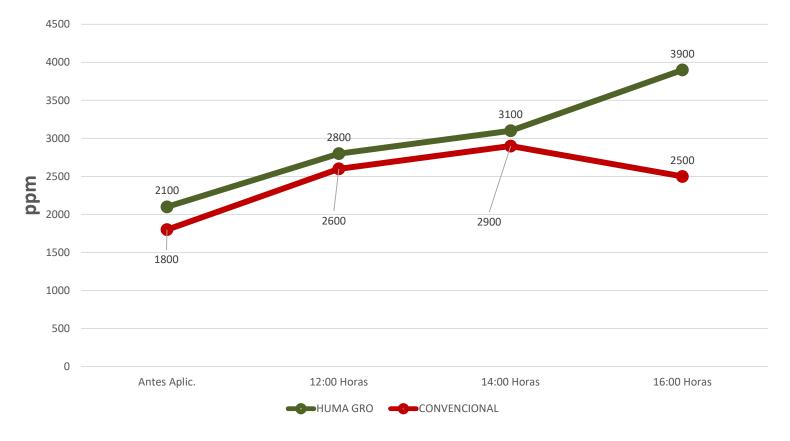
Reading of pH in saturated paste every two hours after fertilization

Reading of EC in saturated paste every two hours after fertilization

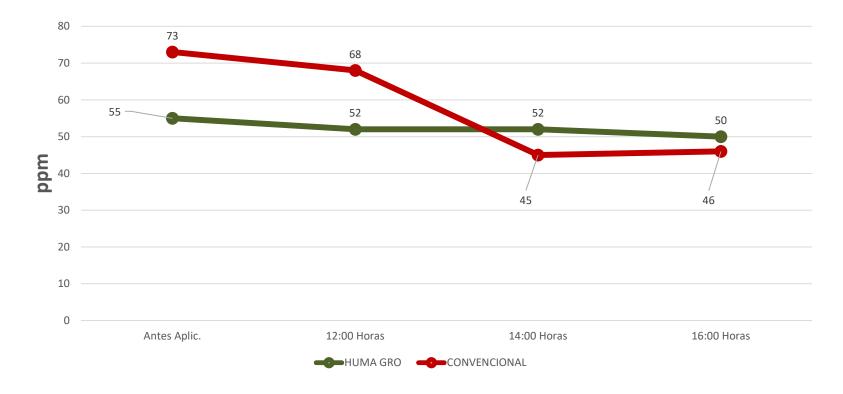


RESULTS: SAP Reading

lon	Lectura SAVIA antes y despues HUMA GRO				Lectura SAVIA antes y despues Convencional			
	Antes	12:00 Horas	14:00 Horas	16:00 Horas	Antes	12:00 Horas	14:00 Horas	16:00 Horas
NO3	910	1800	2000	2000	710	1500	1500	1500
K+	2100	2800	3100	3900	1800	2600	2900	2500
Ca	55	52	52	50	73	68	45	46
Na	32(450	450	450	34(380	400	420



Reading of NO3 in SAP every two hours after fertilization



Reading of K+ in SAP every two hours after fertilization

Reading of Ca++ in SAP every two hours after fertilization

ASSESSING THE EFFICIENCY OF FUNGICIDES FOR CONTROLLING LASIODIPLODIA THEOBROMAE

I GENERAL GOAL:

To determine the efficiency of fungicides (in-vitro) for controlling pathogens.

II SPECIFIC GOAL:

To determine the efficiency of products with copper sulfate-based formulations.

III GROUNDS:

To develop an entry control program for new fungicides.

HUMA C-KGRO

IV METHODOLOGY:

• PATHOGEN ISOLATION:

Isolate the fungus from the affected tissue by inoculating the culture medium.

• TRIAL SET-UP:

-Disinfect the material.

-Determine the doses and dilutions of the products to be used.

• POISONED FOOD TECHNIQUE:

-Prepare the culture medium (PDA) and add each product dose.

-Chop a small portion of the isolated pathogen again to add it to each of the culture mediums prepared.

- Incubate the plates at 25 °C.

• FOLLOW UP:

Measure mycelial growth (radius) 7 times on a daily basis.

Lasiodiplodia theobromae

PATHOGEN ISOLATION

MATERIAL DISINFECTION

TRIAL SET-UP

FOLLOW UP

METHODOLOGY FLOW

DETERMINING EACH PRODUCT DOSE

POISONED FOOD TECHNIQUE:

IV TREATMENTS:

7 daily measurement were performed

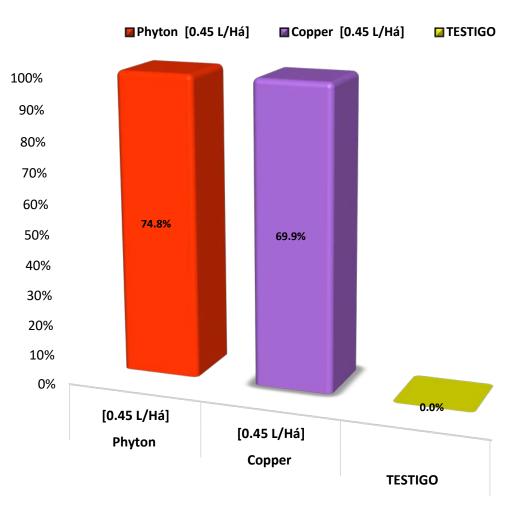
Set-up dates: August 5, 2016

TRATAMIENTO DE PRODUCTOS FUNGICIDAS

PRODUCTO	Dosis	(Lt/Ha) campo	Dilución (prod/agua) Laboratorio (ml)	
Phyton	2001/04	0.45 L/Há	0.15/100	
Copper	300 L/Há	0.45 L/Há	0.15/101	
TESTIGO AB	SOLUTO			

Set-up:

The pH was determined in: *Water-diluted fungicides (pre-mix) *Fungicides in set-up plates (field)

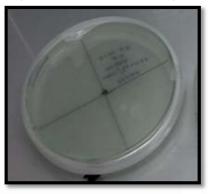

pH EN PRODUCTOS	FUNGICIDAS
------------------------	------------

		Potencial de hidogeno (Ph)				
PRODUCTO	Dosis (Lt/Ha)	Producto con agua	Producto con PDA			
Phyton	[0.45 lt/ha]	4.7	5.7			
Copper	[0.45 lt/ha]	3.1	5.5			
TESTIGO		5.8	5.8			
		510	5.0			

HUMA CAGRO

IV RESULTS:

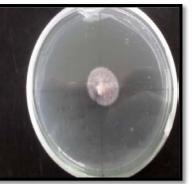
% OF FUNGICIDE CONTROL



COMPARACIÓN DE CONTROL DE FUNGICIDAS

FECHA DE INSTALACIÓN:

: 05 de agosto del 2016



FECHA DE CULMINACIÓN: 12 de agosto del 2016

Report of recent applications to a coffee field

General information

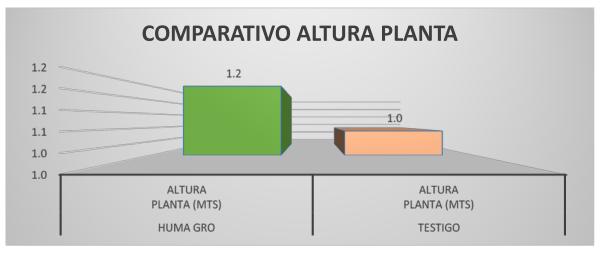
- Location:
 - Department: Cajamarca/Province: Jaen
- Variety: Catimor
- Density: 4000 plants x HA
- Plant age: 2 years
- Trial duration: Annual cycle

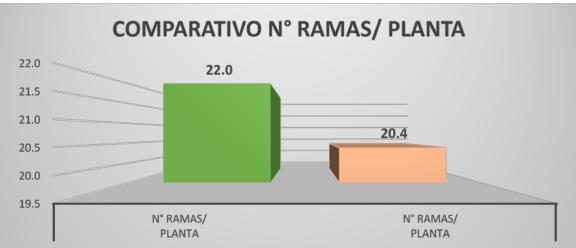
Fertilization plan to be used

lon	UNIDADES	Producto	Und. Med	Dosis 1 16/02/2016	Dosis 2 28/05/2016	dosis 3 08/09/2016	TOTAL
N	80	N30	Lts	10	15	15	40
Р	31.96	Phosmax	Lts	0.94	0.94	1.88	3.76
K	205.79	Super K	Lts	13.33	13.33	5	31.66
Са	53.34	Calcium	Lts	8.89	8.89	17.78	35.56
Mg	26.637	44 Mag	Lts	5.13	5.13	10.23	20.49
S	16	Sulfur	Lts	0.5	0.5	1	2
В	0.18	Boro Max	Lts	0.03	0.03	0.06	0.12
Zn	0.525	Z - Max	Lts	0.09	0.09	0.17	0.35
Mn	0.3	Manganese	Lts	0.05	0.05	0.1	0.2
Fe	0.675	Iron	Lts	0.11	0.11	0.23	0.45
Cu	0.195	Copper	Lts	0.03	0.03	0.07	0.13
	TOTAL DE LITROS				44.1	51.52	134.72

PREPARATION OF FERTILIZERS

© 2014 Bio Huma Netics, Inc. All Rights Reserved. Materials found herein may not be used without written permission from Bio Huma Netics, Inc.



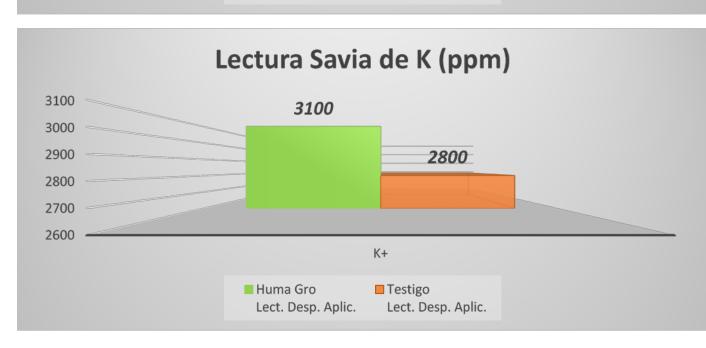

Assessing the development of a coffee crop fertilized with HUMA GRO® 05/28/2016 vs. a conventional fertilizer

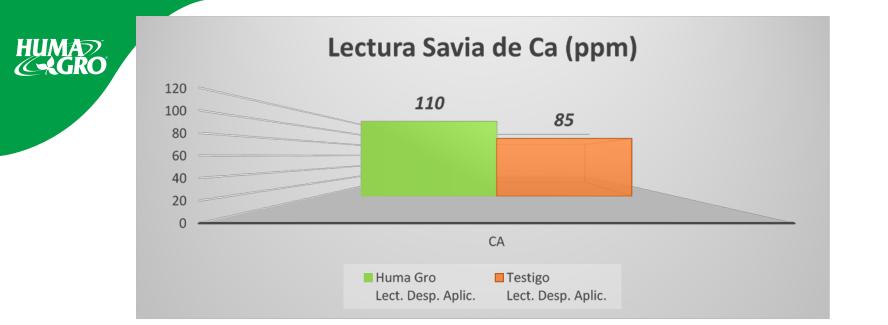
Resultados Evaluación:

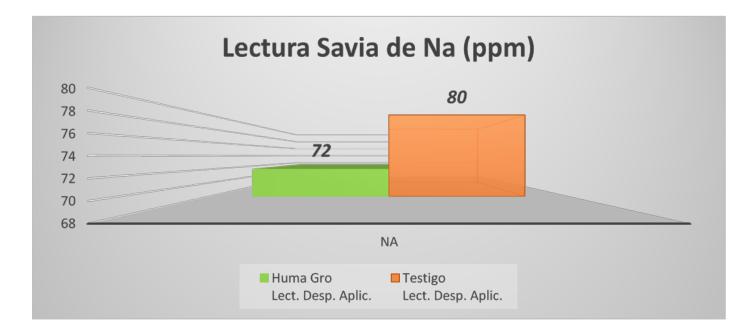
	HUMA GRO		TESTIGO	
MUESTRA	ALTURA PLANTA (mts)	N° RAMAS/ PLANTA	ALTURA PLANTA (mts)	N° RAMAS/ PLANTA
PROMEDIO	1.2	22.0	1.0	20.4

1400

Lectura Savia de NO3 (ppm) 1700 1600 1550 1500 1500


Huma Gro


Lect. Desp. Aplic.


NO3

Testigo

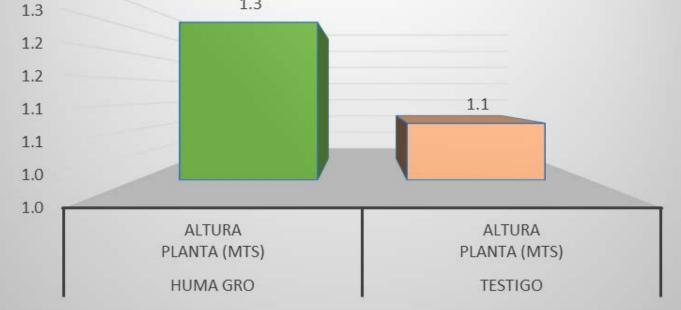
Lect. Desp. Aplic.

Lote Huma Gro.

Lote Testigo.

Lote Huma Gro

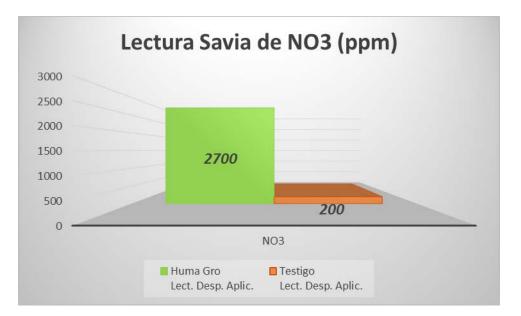
Lote Huma Gro



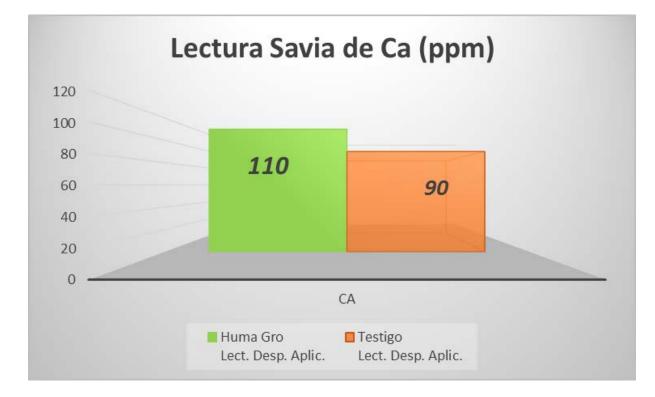
Assessing the development of a coffee crop fertilized with HUMA GRO® 09/08/2016 vs. a conventional fertilizer

COMPARATIVO ALTURA PLANTA 1.3 1.3 1.2

	HUMA GRO		TESTIGO	
MUESTRA	ALTURA	N° RAMAS/	ALTURA	N° RAMAS/
	PLANTA (mts)	PLANTA	PLANTA (mts)	PLANTA
PROMEDIO	1.3	24.0	1.1	21.4


Measurement of nutrient concentration in sap

Horiba equipment calibration with the respective buffer



HUMA C-KGRO

HUMA Constants C

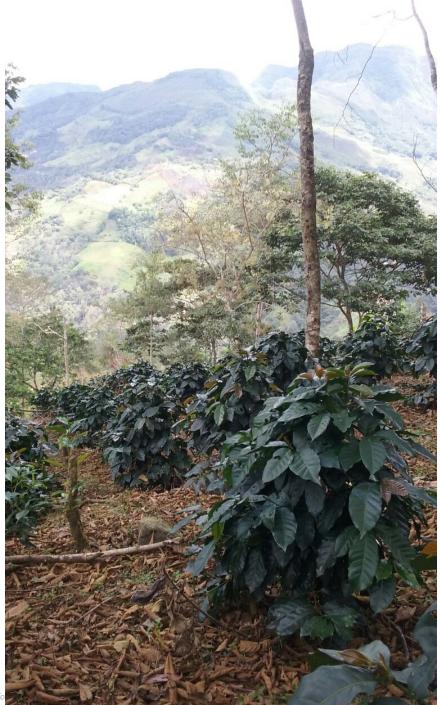
HUMA GRO

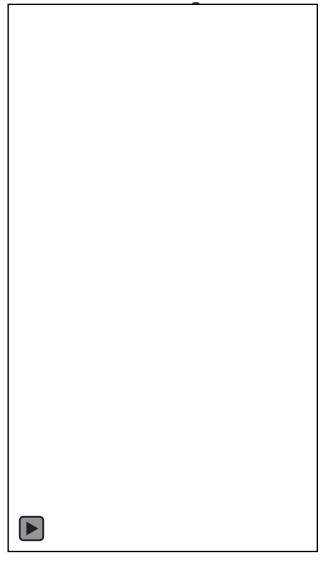
CONVENTIONAL FERTILIZER

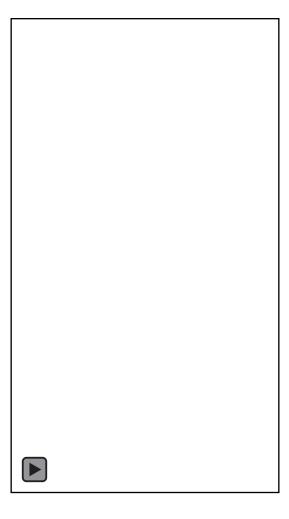
HUMA GRO

CONVENTIONAL FERTILIZER

© 2014 Bio Huma Netics, Inc. All Rights Reserved




© 2014 Bio Huma Netics, Inc. All Rights Reserve



Assessing a conventional control

Assessing HUMA GRO®

Coffee biometrics

Conventional fertilizer (control plot)

Branches: 20 Number of knots: 11 Number of cherry beans: 12

2,640 cherry beans / ha

607.7 kg of parchment beans 1000 lb of parchment beans

HUMA GRO® TREATMENT

Branches: 24 Number of knots: 16 Number of cherry beans: 26

9,984 cherry beans/ ha

2296.32 kg of parchment beans 3800 lb of parchment beans

3.78x increased production

and improved rate

Cherry/parchment bean ratio: 15/3.5

23% of remaining parchment beans 61

FERTILIZATION OF AVOCADOS IN GREENHOUSES

- Avocados were fertilized with liquid Huma Gro fertilizers throughout the production period of the plants (6 months).
- Continuous fertilization was applied using only fertilizers, not soil improver and rooting solutions.

BENEFITS OBTAINED

- THE PRODUCTION CYCLE OF THE PLANT WAS REDUCED TO 35 DAYS, GETTING A BETTER DEVELOPED PLANT.
- A GREATER ROOT MASS WAS OBTAINED; THEREFORE, THE PLANTS PERFORMED BETTER WHEN ENDURING THE PLANTING SHOCK WITH A HIGHER POST-SOWING GROWTH RATE.

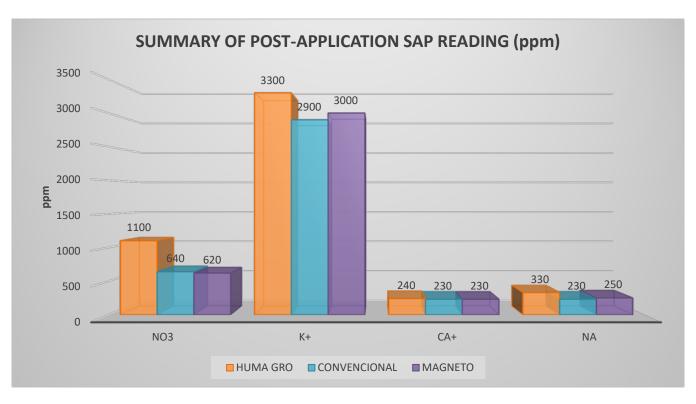
HUMA Colored

Previously fertilized FIELD DATA

- COMPANY:
- LOCATION:
- CROP:
- VARIETY:
- AGE:
- HUMA GRO DOSES
- APPLIED:

Fundo América Arequipa ONION RED - KNOB START - HARVEST

THE ENTIRE NUTRITIONAL PACKAGE WAS REPLACED WITH HUMA GRO®

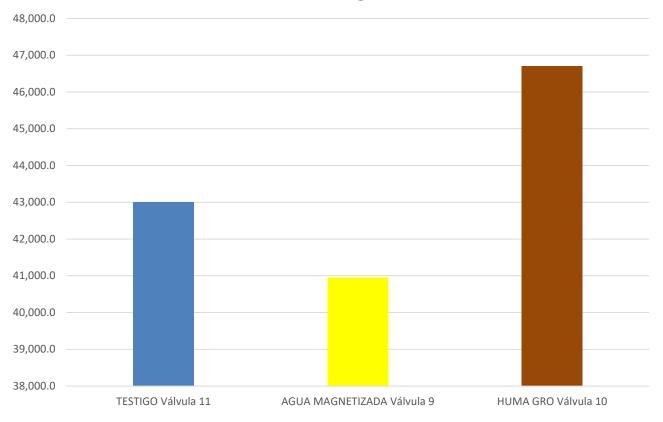

- EXPERIMENTAL DOSE
- (HUMA GRO):
- (CONTROL PLOT):

Shift 2 Valve 10 Shift 2 Valve 11

RESULTS:

SAP READING

HUMA C-KGRO


RESULTS:

YIELD AND QUALITY RATE

SUMMARY OF YIELD AND QUALITY PER HA							
TREATMENT	CONTROL PLOT Valve	MAGNETIZED WATER Valve 9	HUMA GRO Valve 10				
Yield Kg/Ha	43,008.0	40,946.0	46,697.0				
% First	74.4	79.7	79.2				
% Second	17.0	6.1	10.0				
% Blossoming	8.6	14.2	10.8				
Kg First	31,998.0	32,634.0	35,583.1				
Kg Second	7,311.4	2,497.7	6,669.7				
Kg Blossoming	3,698.7	5,814.3	4,444.2				

Rendimineto Kg/Ha

Thanks