

Microbes Where, When, and Why

Wastewater Operator

What my mom thinks I do.

What society thinks I do.

What I tell people I do.

What non-operators think I do.

What I think I do.

What I really do.

- Know your Influent
- Why
- When
- Where
- Floc
- Filamentous Bacteria/Zooglea
- Foam

- Chlorination
- New Perspectives
 - PAO vs. GAO
 - DOUR
- Questions To Be Thinking About
 - What am I looking for?
 - What do I know once I have looked?
 - When should I send the sample out?

Know Your Influent

- After debris removal, influent contains:
 - 99.9% Water
 - 0.1% Solids
 - 30% of solids are suspended
 - 70% of solids are dissolved
- Chemically, influent is a 50/50 mix of inorganics and organics

Know Your Influent

- Influent fluctuates
 - Quantity Changes
 - Seasonal, I/I
 - Tourist Seasons (Rodeos, Football Games)
 - Schools/University Schedules
- Typical wastewater is 0.3 to 0.8 BOD/COD
 - BOD/COD > 0.5 easily treated by biological treatment
 - BOD/COD < 0.3 indicates toxic environment, low food, or needs biological augmentation

- Knowing what microbes you have allows you to see process changes!
 - Influent BOD, P, NH₃, FOG changes
 - Example: new restaurant districts, new industries
 - Allows time to accommodate the changes in your system
 - How often do you see these fluctuations
 - Diurnal, Annually, Rarely, etc.

- Weekly
 - Establish that baseline and collect data
 - Know what you have
 - When you have that "funny" feeling
 - Grab a sample and look, before making changes
- Before and After
 - Need to modify the system
 - Changing MLSS, aeration, cleaning schedule, etc.
 - Physical upgrades to the system

- Where? Wherever you have treatment in your system:
 - Aeration
 - Anoxic
 - Foaming
 - Sludge handling
 - Before secondary settling
 - Permitted discharge point
 - Your problem areas

- Consistency is key!
 - Same location at about the same time, every time
 - Always use a well-mixed, representative sample of mixed liquor or lagoon water
 - Always use the same volume or number of drops on the slide.
 - Consistent errors are easier to fix!

- Additionally
 - Chart treatment system parameters during the good and bad times
 - Everyone reports changes! No Lone Rangers!
 - Measure the parameters routinely and consistently.
 - If an outside party collects your samples, monitor them a couple times a year to see how and where they sample.
 - Tracking helps identify how parameter changes are impacting your system and your effluent.

What Am I Looking For

What Am I Looking For

- Your Favorite Trio
 - Bacteria: they are the rank and file of the work force, about 95% of life in wastewater.
 - Protozoa and Metazoa: assist, make up 5%
- Bacteria are single-celled microorganisms that come in three basic shapes:
 - Bacillus: rod shaped, square, or rectangular,
 - Coccus: round or oval-shaped
 - Spirillum: spiral or corkscrew-shaped
- Bacteria can only consume <u>soluble</u> organic material.

- Solid particles of "food" must be eaten by a two-step process.
 - Absorption
 - Small soluble units of food can now pass through the bacteria's cell wall.
 - Adsorption
 - Food particles and bacteria that are too big to pass through the cell membrane that stick to the cell
 - The bacteria then secrete enzymes, which dissolve food particles into very small units, making food available for absorption

Bacteria: Adsorption & Absorption

- Dispersed growth is a population of suspended, growing, non-flocculated bacteria, algae or fungi (most is bacteria)
 - If the growth rate is too fast
 - Can result in very turbid effluent
 - Often occurs after a toxicity or hydraulic washout event when the activated sludge biomass is low and high F/M conditions exist
 - Increasing MLSS can help resolve hydraulic washout issues

Dispersed Growth

• Protozoa:

- They are single-celled organisms.
- A single cell performs all functions; there is no division of labor.
- They have a cellular grade of organization
- Examples: amoeba, paramecium, flagellates, suctorians, and ciliates
- Main defense is encystment or creation of a hard shell
 - Example: Shelled amoebas

• Metazoa:

- They are multi-cellular organisms.
- They show division labor as different cells or organs that perform different functions.
- They have cellular tissue, organs, and system grade of organization.
 - Examples: rotifers, nematodes, tardigrades (water bears)

Factors That Impact Microbial Growth

- *Mixing*: microbial contact with food
- Temperature
- *pH*
- Osmotic pressure
- Chemical/Nutrient requirements
 - Carbon
 - Nitrogen, sulfur, and phosphorous
 - Trace elements/nutrients
 - Oxygen
- Toxicity

Factors That Impact Microbial Growth

- BOD:Nitrogen:Phosphorus (B:N:P) is 100:10:1.
- When conditions are unfavorable, protozoa and metazoa that form shells will dominate in the system.

Growth Curve

- Microbial growth occurs in stages
 - Lag phase: preparatory stage for division, hour to days
 - Bacillus sp. (BOD-eating bacteria) 20–30 mins.
 - Nitrifiers 22–48 hours
 - Log phase: exponential growth phase, cells are the most vulnerable at this stage
 - Stationary phase: maximum population density is reached
 - Death rate = growth rate
 - Death phase: rate of death exceeds the rate of growth
 - Endogenous phase: total mass of microorganisms begins to slowly decrease as the cells use up their stored reserves and begin to die

Logarithm of numbers of cells

Floc Morphology

Floc Morphology

- Floc Morphology
 - Color
 - Shape and Structure
 - Size
 - Density
- Filamentous Bacteria
- Foam

- **Color**: indicates the age of the biomass.
 - Clear indicates a very young biomass.
 - Golden brown indicates a healthy floc.
 - Black indicates the floc is turning anaerobic and running out of air or is older.
- Shape and Structures: weak, lacy, open, diffuse, compact, firm, rounded
- Size: regular or irregular, pin or large
- **Density**: the more firm and compact a floc is, the better it will settle

Floc Morphology

-5

+5

Toni Glymph Method

- Floc-formers generally react to negative situations by producing excess amounts of lipopolysaccharide.
- Non floc-formers generally form zoogleal masses in response to negative conditions.

Detention Time (Sludge Age)

- Several different ranking systems exist: Richard's, Eikelboom's, etc.
- Typical classifications
 - None to few
 - Some
 - Common
 - Very common (where operational issues can appear)
 - Abundant/Excessive

Filamentous Bacteria Ranking Examples

None to Few

Common

Probiotic SOLUTIONS

- What you need to know when filamentous bacteria show up:
 - Influent load (BOD or COD)
 - pH
 - DO
 - Sludge age
 - Aeration basin F/M
 - Mixed liquor suspended solids
 - Temperature

- The SVI or 30-minute settling tests
 - Identify a problem but may not necessarily tell you what the problem is.
 - Filamentous bacteria
 - Excess zooglea
 - Slime bulking
- There are three main filaments that are responsible for the majority of the foaming in activated sludge treatment systems.
 - All prefer FOG and low F/M conditions

Probiotic

Microthrix Parvicella

Nocardia

Bulking Filamentous Bacteria

Filament Name	Characteristics	Cause
Sphaerotilus natans	Sheath; round-ended rod cells, false branching, Gram(-)	Insufficient DO for the applied organic loading
Halicomenobacter hydrossis	Sheath difficult to detect; thin straight; Gram (-)	Low DO, low F/M; nutrient deficient conditions
Thiothrix I & II	Sheath; "barrel-shaped" cells; stores sulfur granules; Thiothrix Type I & II; Type I is twice the size as Type II, Gram (-)	Septic wastes; waste deficient in nitrogen; excess organic acids
Туре 0041	Sheath; square-shaped cells; Gram-variable; attached growth	Low F/M; nutrient deficient conditions
Туре 0675	Sheath; square-shaped cells; Gram-variable; attached growth, slightly smaller than type 0041	Low F/M; nutrient deficient conditions
Туре 1701	Sheath; thin, round-ended rod cells, attached growth, Gram (-)	Low DO
Type 1851	Sheath; sparse attached growth; rectangular-shaped cells; grows in bundles	Low organic loading
Type 021N	Discoid-shaped cells; "stacked hockey pucks", round sulfur granules; slight reaction to Neisser stain	Septic wastes; waste deficient in nitrogen; excess organic acids
Beggiatoa	Motile; slowly gliding; stores sulfur granules	Septic wastes; waste deficient in nitrogen; excess organic acids; organic overload
Туре 0914	Rectangular cells with rectangular-shaped sulfur granules	Septic wastes; waste deficient in nitrogen; excess organic acids; organic overload

- Zooglea
 - Responsible for sludge bulking
 - Polysaccharide slime
 - High F/M ratio
 - pH is usually lower in MLSS
 - May also be an indication of nutrient deficiency (nitrogen or phosphorus)
- Fixes
 - In the MLSS, the pH can be increased to above pH 7.
 - Nutrient addition is usually recommended.

- Foam: colors can be indicators of operational issues
 - White: system start-up or possible excessive detergents in treatment waters

Foam (Cont'd)

- Grey (ash): excessive fines from recycled systems
- Brown: filamentous, also called Nocaridia foam, others are Microthrix or Type 1863

Probiotic SOLUTIONS

Chlorination

- Chlorine is used to break and or damage filiments that extend above the wastewater
 - The trick: not damaging organisms within the floc and not the wastewater itself
 - Can make non-filamentous worse: e.g., slime bulking, zooglea bulking, or poor floc development
- While chlorination reduces bulking issues, if you reduce the chlorination the filaments will regrow rapidly!
 - Underlying bulking issues are left unresolved

- Tracking PAOs and GAOs to predict WWTP behaviors.
 - Phosphorus (polyphosphate) Accumulating Micro-organisms (PAOs)
 - Aerobic phase of the process, PAOs are able to multiply and take up phosphate to replenish the supplies depleted in the anaerobic phase.
 - Glycogen-Accumulating Organisms (GAOs)
 - GAOs are capable of taking up the often-limited VFA substrates from EBPR systems anaerobically; however, GAOs do not contribute to P removal.
 - Tracking the quantity of PAOs and GAOs in your system provides a way to anticipate toxicity issues.
 - Each system is unique.

- Precursor to toxicity is changes in the dissolved oxygen uptake rate (DOUR)
 - Unique to each system
 - DOUR, in mg O₂/L/hr = (DO_initial DO_final) * 60 / Length of test in minutes

Summary

- Why
- When
- Where
- Questions To Be Thinking About
 - What am I looking for?
 - What do I know once I have looked?
 - When should I send the sample out?

- *Microbiological Examination of Water and Wastewater*, Lewis Publishers, Maria Csuros, Csaba Csurus, 1999
- Handbook of Microscopic Examination of Sludge, 1983, Eikelboom, D.H. and Van Buijsen, H.J.J.
- Minnesota Pollution Control Agency, Phosphorus Treatment and Removal Technologies <u>https://www.pca.state.mn.us/sites/default/files/wq-wwtp9-02.pdf</u>
- Causes and Control of Activated Sludge Bulking and Foaming, Second Edition, D. Jenkins, M.G. Richard and G. Daigger, Lewis Publishers, Boca Raton, FL, 1993. <u>http://www.dec.ny.gov/chemical/34373.html</u>
- Website http://group1micropara.weebly.com/classification.html
- **Toni Glymph,** Senior Environmental Microbiologist at Metropolitan Water Reclamation District, Chicago

Publication No. PS-160928-01