

Huma Gro Products Research Data

Rita Abi-Ghanem, PhD Sr. Director of Research and Development Bio Huma Netics, Inc.

HUMAT CAGRO

Outline

✤ Benefits of humic, fulvic acids, and MCT[®]

Research reports

Super Phos[®]

I-Spring wheat II-P column study III-Vegetables

- A- Lettuce
- B- Potato
- C- Tomato

➤ Encapsalt[™]

I- Bermudagrass

➢ Proud 3[®] and Triple Play ™

- I-Whiteflies on Vebena II-Direct spray studies
 - A-Pea aphids
 - **B- Silverleaf whiteflies**
 - C- Cabbage loopers

Natural Sources of Humic Substances

Natural Sources	Content of Humic and Fulvic Acids in %	
Leonardite/Humate	40 - 85	
Black Peat	10 - 40	
Sapropel Peat	10 - 20	
Brown Coal	10 - 30	
Dung	5 - 15	
Compost	2 - 5	
Soil	1 - 5	
Sludge	1 - 5	
Hard Coal	0 - 1	

Source: Humintech

Benefits of Humic Acids (HAs)

- Potato field experimental results illustrated both the direct and indirect benefits of HAs on plant growth and soil (Seyedbagheri, 2010)
- Direct benefits on plant cell membrane:
 - Improved transport of nutritional elements
 - Enhanced protein synthesis, plant hormone-like activity, enhanced photosynthesis, and effects on enzyme activities
- Indirect benefits on plant growth:
 - Solubilization of microelements (i.e. Fe, Zn, Mn) and macroelements (i.e. K, Ca, P)
 - Reduction of active levels of toxic elements
 - Increased microbial populations

HUMA C-KGRO

Benefits of Humic Acids (HAs) cont'd

- HAs can increase plant yield via:
 - Stimulation of microbial activity (Petrovic et al., 1982)
 - Amelioration of pH in alkaline soil (Li and Wang, 1988)
- Humic substances influenced the availability of phosphorus (P) for wheat via:
 - Increased P availability to wheat plants (Wang et al., 1995)
 - Decreased P fixation in soil
 - Increased P uptake
 - Increased wheat yield

Source: http://www.phelpstek.com/portfolio/samples/humic_acid.html

Functional Groups of Humic and Fulvic Acids Containing Oxygen

	Total Acidity	-СООН	Acid -OH	Weakly Acidic and Alcolholic - OH	-C=O
	Normal Range, cmol(+) per kg				
Humic Acids	500-870	150-300	250-570	270-350	90-300
Fulvic Acids	900-1,400	610-910	270-670	330-490	110-310
Source: Stevenson y Butler, 1969					

Micro Carbon Technology[®] produces organic matter that is more chemically active than humic or fulvic acids

The Carbon Molecular Size Makes the Difference

Humic Acids 1,000's of Carbon Rings Fulvic Acids 100's of Carbon Rings Micro Carbon Technology®

Less than 10 Carbon rings

Advantages of Huma Gro[®] (HG) Fertilizers with MCT[®]

- Micro Carbon Technology[®] (MCT) contains smaller molecules than HAs and has a powerful effect on soil nutrients uptake, soil properties, and plant growth.
- MCT protects nutrients from being tied up in soil.
- MCT can be applied via any type of irrigation systems.
- MCT can be applied via the leaves or roots.

HUMA C-&GRO

Outline

Benefits of humic and fulvic acids

✤ Research reports

Super Phos[®]

I- Spring wheat

- II- P column study
- **III-Vegetables**
 - A- Lettuce
 - B- Potato
 - C- Tomato

➤ Encapsalt[™]

I- Bermudagrass

➢ Proud 3[®] and Triple Play ™

- I- Whiteflies on Vebena
- II- Direct spray studies
 - A-Pea aphids
 - **B- Silverleaf whiteflies**
 - C- Cabbage loopers

SUPER PHOS®

I- Efficiency Test of HUMA GRO® SUPER PHOS® in Spring Wheat (Olga Walsh, PhD, Montana State University)

Objective:

HUMA> (C=&GRO

Evaluate the relative efficiency of topdress and foliar application of SP and traditional P fertilizers (i.e. ammonium polyphosphate (APP), diammonium phosphate (DAP), and triple superphosphate (TSP)) in spring wheat.

Materials and Methods

- The experimental site was Montana State University's Western Triangle Agricultural Research Center (WTARC), near Conrad, MT.
- Choteau spring wheat variety was used.
- Eleven treatments were replicated four times.
- Nitrogen was applied to SP treatments to compensate for the N content in DAP and APP.

Treatments

- Treatment 1 was established as a check plot unfertilized with P.
- Treatments 2-7 involved application of liquid APP and two granular P fertilizers (DAP and TSP) with the seed at planting.
- Treatments 8-9 involved application of SP (diluted with water at a concentration of no greater than 5% (v/v)) at seeding by dribbling it over the top of the seed.
- Treatments 10-11 involved foliar application of SP at tillering (Feekes 5) using an all-terrain-vehicle (ATV)-mounted stream-bar sprayer.

Results: SP on Spring Wheat

Figure 1: Spring wheat grain yield as a function of P fertilizer source, rate, time, and placement, Conrad, MT, 2013. Data points followed by the same letter are not significantly different at p<0.05.

Conclusion: SP on Spring Wheat

- Application of SP at seeding at both 10 and 30 lb P₂O₅/ac resulted in significantly higher grain yields compared to the untreated control.
- Tripling the application rate from 10 to 30 lb P_2O_5/ac increased yield by 2 bu/ac.
- Foliar application of SP at 15 lb P₂O₅/ac at tillering also produced higher grain yields compared to the untreated control.

HUMAD?

SCRO

II- SP Column Study (Vimala Nair, PhD, University of Florida)

Hypothesis:

- Micro Carbon Technology[®](MCT) increases P mobility in acidic soil.

Concepts:

- P saturation ratio (PSR) measures P retention in the soil.
- Soil P Storage Capacity (SPSC) refers to mg of P that can be added to a kg of soil before a threshold of PSR is reached.

SPSC = (0.10 - soil PSR) * M3 [Fe + Al] * 31

SPSC and Water Soluble P

- When SPSC is positive, soil is a P sink
- When SPSC is negative, soil is a P source

Source: Chrysostome M, VD Nair, WG Harris and RD Rhue. 2007. Soil Sci. Soc. Am. J. 71:1564–1569. Nair VD and WG Harris. 2014. Advances in Agriculture. doi:10.1155/2014/723064.

Treatments

Two soil types: Candler (pH = 4.8) and Apopka (pH = 5.4)

Table 1. Amount of fertilizer (liquid or solid) applied per column

Fertilizer #	Fertilizer	Fertilizer applied per column (mg)
1	SUPER PHOS™, (SP), 0-50-0 (liquid)	2.89
2	Phosphoric acid, 0-52-0 (white, liquid)	2.70
3	Ammonium polyphosphate, 10-34-0 (liquid)	4.28
4	Diammonium phosphate, 18-46-0 (solid)	2.81
5	Triple superphosphate, 45% P2O5 (solid)	3.27
6	Monoammonium phosphate, 11-52-0 (solid)	2.48

Materials and Methods

- Total number of columns = 2 soils x 7 treatments (6 + control) x 3 reps = 42
- Liquid fertilizers were diluted with distilled ^{16"} water to 1 gallon SP/ac and applied with the first 4" of water.
- Solid fertilizers were mixed in the top inch of soil to a concentration equivalent to that in SP solution.

Materials and Methods

- 4" of water were added (7 days apart) for 4 times.
- Leachate were collected and analyzed.
- A week after the fourth water application, soil columns were sectioned into 6 increments (3 cm = 1.18 "), and soil samples (42x6=252) were air-dried for lab analyses (WSP, M3-P, Fe, and Al).

Results: P Column Study

Figure. 1: Soil P storage capacity (SPSC) changes with depth for the various liquid fertilizer treatments. "C" and "A" in the legend indicate the soils, "C" for Candler and "A" for Apopka.

Conclusion: P Column Study

- Changes in SPSC within the soil columns indicate that SP likely moves faster than white phosphoric acid and ammonium poly phosphate.
- We can postulate that due to SP's organic factor (MCT), P does not react with Fe and Al at low pH to the extent that other P fertilizers do.

(Charles Sanchez, PhD, UA)

Objective:

To evaluate phosphorous (P) use efficiency resulting from SP[®]on:

- A- Lettuce
- **B-** Tomato
- C- Potato

Materials and Methods

- The studies were conducted on soil mapped as Casa Grande (fine-loamy) at the Maricopa Agricultural Center, AZ .
- RCBD, 4 replicates

HUMA C-XGRO

A-Lettuce

- Soil was low in P.
- SP plots received 11 kg N/ha as urea at planting to compensate for the N in mono ammonium phosphate (MAP).
- Fertilizer treatments:
 - 1. Control (No P)
 - 2. 100 kg P/ha as MAP
 - 3. 50 kg P/ha as MAP
 - 5. 6.25 kg P/ha as SP
 - 6. 12.5 kg P/ha as SP
 - 7. 25 kg P/ha as SP
 - 8. 50 kg P/ha as SP

Results: Lettuce

Figure 1. Lettuce marketable yield.

- The highest yield was associated with the 100 kg P/ha rate as MAP, which corresponds to the University recommendation of P fertilizer for lettuce on a low testing soil.
- The next highest yield was associated with the 50 kg P/ha rate as MAP. This yield was not significantly different from the 12.5 to 50 kg P/ha rates as SP.

Conclusion: Lettuce

The observation that only 12.5 kg P/ha as SP produced yields similar to the 50 kg P/ha rate as MAP suggests enhanced efficiency associated with SP.

B- Potato

- Soil was low in P.
- Fertilizer treatments:
 - 1. Control (No P)
 - 3. 50 kg P/ha as MAP
 - 4. 25 kg P/ha as MAP
 - 5. 6.25 kg P/ha as P
 - 6. 12.5 kg P/ha as SP
 - 7. 25 kg P/ha as SP
 - 8. 50 kg P/ha as SP

Results: Potato

Figure 2. Potato marketable yield.

HUMA7 (SC CRO

- The highest yields was associated with the 50 kg P/ha rate as MAP which corresponds to the University P fertilizer recommendation for potato on this soil.
- The next highest yield was associated with the 25 kg P/ha rate as MAP.

Conclusion: Potato

The observation that only 6.25 kg P/ha and 25 kg P/ha as SP produced yields similar to the 50 kg P/ha as MAP suggests enhanced efficiency associated with SP.

HUMA C-KGRO

C- Tomato

- Soil P > 10mg P/kg.
- Fertilizer treatments:
 - 1. Control (plus UAN 32)
 - 2. Control with N Supernitro
 - 3. MAP 100% Program (plus UAN 32)
 - 4. 75% P as SP/Supernitro
 - 5. 50% P as SP/Supernitro
 - 6. 25% P as SP/ Supernitro

HUMA CAGRO

Results: Tomato

Figure 3. Tomato cumulative yield.

Conclusion: Tomato

- The total cumulative yield associated with SP at 25% or 50% rate was as good as MAP at 100% rate.
- The highest total cumulative yields were associated with treatments 2 (SN only) and 4 (75% P SP/SN), suggesting that Supernitro may be a better in-season N source than UAN32.

HUMA AGRO

Outline

Benefits of humic and fulvic acids

Research reports

Super Phos[®]

- I- Spring wheat
- II- P column study
- **III- Vegetables**
 - A- Lettuce
 - B- Potato
 - C- Tomato

Encapsalt

I- Bermudagrass

➢ Proud 3[®] and Triple Play ™

- I- Whiteflies on Vebena
- II- Direct spray studies
 - A-Pea aphids
 - **B- Silverleaf whiteflies**
 - C- Cabbage loopers

Encapsalt™

© 2014 Bio Huma Netics, Inc. All Rights Reserved. Materials found herein may not be used without written permission from Bio Huma Netics, Inc.

I- Growth Responses of Bermudagrass to Various Bio-Stimulants Under Sodium Chloride Stress (Mohammad Pessarakli, PhD, UA)

- Bermudagrass (Cynodon dactylon L.), cv. Tifway growth responses to three bio-stimulants were determined (4 replicates/treatment, RCB design):
 - Bio-Turf-Pro
 - Encapsalt[™]
 - Ferrogrow
- Grasses were grown hydroponically for 12 weeks in halfstrength Hoagland solution in a greenhouse.
- At week 7, shoots and roots were clipped, and grasses were exposed to salt stress (EC of 15 dS/m).

Experimental Settings

HUMA CAGRO

Measurements

- Shoot and root lengths, weekly
- Shoot fresh and dry weights, weekly
- Root fresh and dry weights, at harvest

Results: Encapsalt on Bermudagrass

Figure 1. Bermudagrass Shoot and Root Lengths

Results: Encapsalt on Bermudagrass cont'd

Figure 2. Bemudagrass Shoot Fresh and Dry Weight

HUMA CAGRO

Results: Encapsalt on Bermudagrass cont'd

Table 2. Means of root fresh weight (FW) and dry weight (DW) at harvest.

Bio-stimulant	Root FW (g)	Root DW (g)

CON	0.10b	0.04 a	
BTP	0.18 a	0.05a	
ENC	0.12b	0.04 a	
FER	0.15ab	0.04a	

Conclusion: Encapsalt on Bermudagrass

- Among the three bio-stimulants, Encapsalt resulted in numerically the lowest enhancement on shoot and root heights, but higher enhancement in shoot and root weights than the control.
- Importantly, lower shoot height and higher grass weights are the most desirable quality factors in turfgrass management.

HUMAD Calgro

HUMA CAGRO

Outline

Benefits of humic and fulvic acids

✤ Research reports

Super Phos[®]

- I- Spring wheat
- II- P column study
- **III- Vegetables**
 - A- Lettuce
 - B- Potato
 - C- Tomato

Encapsalt

I- Bermudagrass

➢ Proud 3[®] and Triple Play ™

- I- Whiteflies on Vebena
- II- Direct spray studies
 - A-Pea aphids
 - **B- Silverleaf whiteflies**
 - C- Cabbage loopers

Proud 3[®] and Triple PlayTM

© 2014 Bio Huma Netics, Inc. All Rights Reserved. Materials found herein may not be used without written permission from Bio Huma Netics, Inc.

I- Efficacy of HUMA GRQ[®] PROUD3[®] to Control Whitefly on Verbena

(Lucia Villavicencio, PhD, Center for Applied Horticultural Research, CA)

- The trial was conducted with 6 replicates/treatment in a climatecontrolled greenhouse with set points of 65/75°F (°C) night/day temperature and under natural irradiance and photoperiod.
- The trial involved foliar application of PROUD 3[®] at 1:100 dilution rate for weeks 0-4.
- Adults and nymphs were counted prior to treatment application and once a week for a total of 7 weeks.

© 2014 Bio Huma Netics, Inc. All Rights Reserved. Materials found herein may not be used without written permission from Bio Huma Netics, Inc.

HUMAD

//___GRO

Materials and Methods Cont'd

- To count the number of adults, each plant was carefully lifted immediately before treatment application, and the adults were counted on the underside of all leaves.
- To count the number of nymphs, two fully extended leaves were excised from the lower section of each plant and brought to the laboratory for enumeration using a stereomicroscope.

Photo of Whitefly Adults by Visuals Unlimited http://visualsunlmited.photoshelter.comlimagefl0000BnAvh7FZ1EA

HUMA? (SGRO

Results: Whiteflies on Vebena

Figure 2. Number of whitefly adults during weeks 4-6

Conclusion: Whiteflies on Vebena

 During the 4th, 5th, and 6th weeks of the trial, the number of whitefly adults were 8 times lower in the Verbena plants treated with the OMRI-listed PROUD 3[®] product than in the untreated controls.

HUMA? // JGRO

II- Efficacy of Proud 3 [®] and Triple Play™ when applied as direct spray (Snell Scientifics, LLC)

Objective:

To test the efficacy of Proud 3[®] and Triple Play[™] to control:

- A- Pea aphids (Acyrthosiphon pisum)
- B- Silverleaf whiteflies (Bemisia argentifolii).
- C- Cabbage loopers (Trichoplusia ni)

Materials and Methods

- Alive pea aphids were placed into test arenas (10 aphids/arena, 4 arenas/treatment).
- Treatments were diluted at 1:100 and included Proud 3[®], Triple Play[™], and a control.
- Each replicate was sprayed with 2 trigger pulls using a "mist" setting from approximately 12" (= 30 cm) distance.
- The number of alive, knocked down, or dead aphids was recorded at 30 min, 1 hr, 2 hr, 4 hr, and 24 hr intervals.
- Alive: Insects exhibited normal motion.
- Knock down: Insects exhibited some movement but could not crawl.
- Dead: Insects exhibited no movement even when stimulated.

Experimental Setting

Insects in Treatment Arenas

Insects in Post-Treatment Arenas

A- Results: Pea Aphids

Figure 1: Pea Aphid Mortality

Conclusion: Pea Aphids

- The OMRI-listed Proud 3[®] resulted in 5.3 times greater mortality of pea aphid than the control at 24 hrs after treatment.
- Triple Play[™] resulted in 5.5 times greater mortality of pea aphid than the control at 24 hrs after treatment.

B- Results: Silverleaf Whiteflies

Figure 2: Silverleaf whiteflies Mortality

Conclusion: Silverleaf Whiteflies

- The OMRI-listed Proud 3[®] and Triple Play [™] resulted in Silverleaf whiteflies mortality of 93% and 100%, respectively, after 30 min of application.
- The OMRI-listed Proud 3[®] and Triple Play [™] resulted in 7.7 times greater mortality of Silverleaf whiteflies than the control at 24 hrs after treatment.

HUMA?

C- Results: Cabbage Loopers

Figure 3: Cabbage Looper Mortality

Conclusion: Cabbage Loopers

- The OMRI-listed Proud 3[®] resulted in 6.2 times greater mortality of cabbage loopers than the control at 24 hrs after treatment.
- Triple Play[™] resulted in 6 times greater mortality of cabbage loopers than the control at 24 hrs after treatment.

HUMA) (SGRO

Thank you for your attendance!

