

Micro Carbon Technology

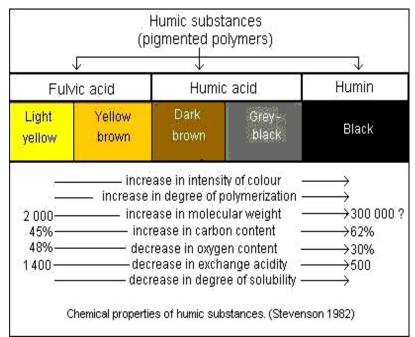
Tom Crawford, Jr, PhD Global Agronomy LLC

Significance of Micro Carbon Technology®

- Unique properties.
- The essential ingredient of all fluid products of Bio Huma Netics, Inc.® (BHN).
- Adds value to BHN products:
 - fertilizers
 - soil improvement products
 - wastewater treatment products
 - organic pesticides
- Provides competitive advantage in global markets.

History of Micro Carbon Technology®

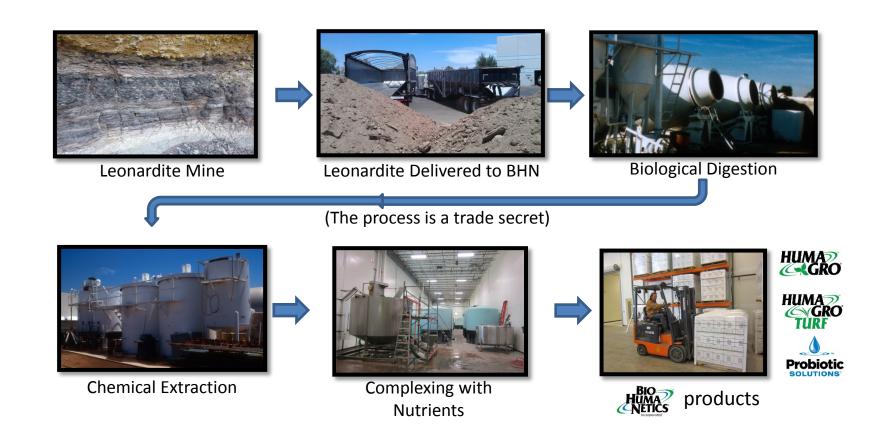
- 1973 Dr. Jordan Smith, Mr. Don Organ & Mr. Delworth Stout of Sunburst Mining Co. first applied leonardite to agricultural fields.
- 1981 Sunburst Mining Co. developed proprietary process to extract organic matter from leonardite.
- 1995 Bio Huma Netics® (BHN) company name registered with U.S. Patent & Trademark Office.
- 2010 Micro Carbon Technology™ (MCT) concept first used by BHN.
- 2012 Micro Carbon Technology™ first used in interstate commerce by BHN.
- 2013 Micro Carbon Technology® registered with U.S. Patent and Trademark Office.



BHN Leonardite vs Anthracite Coal

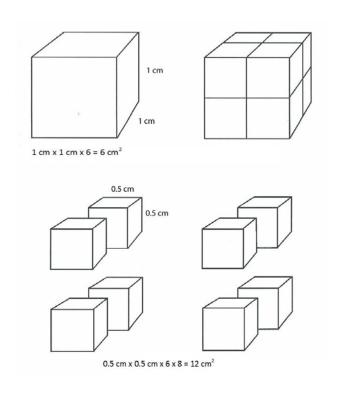
BHN Leonardite

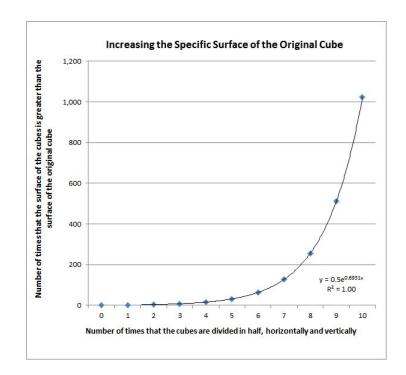
Source: M. Boyd


Anthracite Coal

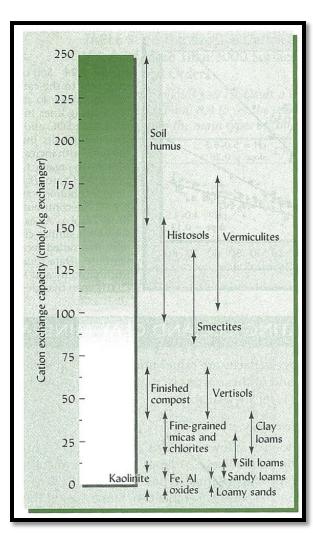
Source: Wikipedia

From Leonardite to Micro Carbon Technology® (MCT) and Products that Contain MCT




PROPERTIES OF MICRO CARBON TECHNOLOGY®

Micro Carbon Technology® Produces Organic Matter with Greater Specific Surface



Source: F.S. Perls, 1969

High Cation Exchange Capacity

Humic acid: 500 - 870 cmol_c/kg

Fulvic acid: 900 - 1,400 cmol_c/kg

 Micro Carbon Technology®: A Complex Mixture of Natural Organic Molecules More Chemically Active than Untreated Humic and Fulvic Acids of Leonardite.

Source: Brady and Weil, 2008)

Functional Groups of Humic and Fulvic Acids that Contain Oxygen

	Total Acidity or Cation Exchange Capacity	-соон	Acid -OH	Weakly Acid and Alcolholic -OH	-C=O						
	Normal Range, cmol(+) per kg										
Humic Acids	500-870	150-300	250-570	270-350	90-300						
Fulvic Acids	900-1,400	610-910	270-670	330-490	110-310						

Source: Stevenson y Butler, 1969

Micro Carbon Technology[®] is a Complex Mixture of Natural Organic Molecules More Chemically Active than Untreated Humic and Fulvic Acids of Leonardite.

Micro Carbon Technology® includes interaction of organic matter with:

- Inorganic, cationic nutrients of plants and microorganisms
- Inorganic, anionic nutrients of plants and microorganisms
- Organic (carbon-containing) nutrients of plants and microorganisms

The 17 Essential Metallic and Non-Metallic Nutrients of Plants and Microorganisms

PERIODIC TABLE OF THE ELEMENTS

· la	2a	3b	4b	5b	6b	7b		8		1b	2b	3a.	4a	- 5a	- 6a	7a	0	Orbit
1 +! H -1		Atomic Number Symbol Symbol Atomic Weight 118.69 Electron Configuration															2 0 He 4.00260 2	к
3 +1 Li	4 +2 Be												6 +2 C +4 -4	7 +1 N +2 +3 +4 +5	8 -2 O	9 -1. F	10 0 Ne	
6.94.	9.01218											10.81	12.011 2-4	14.0067 - 2 2-5 - 3	15.9994 2-6	18.99846 2-7	20.17 ₉ 2-8	KL
11 +1 Na	12 +2 Mg	Transition Elements Elements										13 +3 Al	14 +2 Si +4 -4	15 +3 P +5 -3	16 +4 S +6 -2	17 +1 Cl +5 +7	18 0 Ar	
22.98977 2-8 I	24.305 2 8 2		Group 8									26.9815 2-8-3	28.086 2-8-4	30.9738 2-8-5	32.06 2-8-6	35.453 2-8-7	39.948 2-8-8	K-L-M
19 +1 K	20 +2 Ca	21 +3 Sc	22 +2 Ti +3 +4	23 +2 V +3 +4	24 +2 Cr +3 +6	25 +2 Mn ⁺³	26 +2 Fe +3	27 +2 Co +3	28 +2 Ni +3	29 +1 Cu +2	30 +2 Zn	31 +3 Ga	32 +2 Ge +4	33 +3 As +5 -3	34 +4 Se +6 -2	35 +1 Br +5	36 0 Kr	
39.10 ₂ 8-8-1	40.08 -8-8-2	44.9559 -8-9-2	47.90 8 10 2	50.9414 8 11 2	51.996 -8-13-1	54.9380 -8-13 2	55.847 -8-14-2	58.9332 -8-15-2	58.71 8-16-2	63.546	65.38 -8-18-2	69.72 -8-18-3	72.59 -8-18-4	74.9216 -8-18-5	78.96 -8-18-6	79.904 -8-18-7	83.80° -8-18-8	-L-M-N
37 +1 Rb	38 +2 Sr	39 +3 Y	40 +4 Zr	41 +3 Nb+5	42 +6 Mo	43 +4 Tc +6 +7	44 +3 Ru	45 +3 Rh		47 +1 Ag	48 +2 Cd	49 +3 In	50 +2 Sn +4	51 +3 Sb +5 -3	52 +4 Te +6 -2	53 +1 I +5 +7	54 0 Xe	
85.467 ₈ -18-8-1	87.62 -18-8-2	88.9059 18-9-2	91.22 -18-10-2	92.9064 -18-12-1	95.94 - 18 13 - 1	98.9062 -18-13-2	101.07 -18-15-1	102.9055 -18-16-1	18-18-0	107.868 -18-18-1		114.82 -18-18-3	118.69 -18-18-4	121.75 -18-18-5	127.60 -18-18-6	126.9045 -18-18-7	131.30 -18-18-8	- M-N-0
55 +1 Cs 132.9055 -18-8-1	56 +2 Ba 137.34 -18-8-2	57* +3 La 138.9055 -18-9-2	72 +4 Hf 178.49 -32-10-2	Ta 180.947 ₉	74 +6 W 183.85	Re +6 186.2	Os +4	77 +3 Ir +4 192.22 -32-15-2	78 +2 Pt +4 195.09 -32-16-2	196.9665	200.59	81 +1 T1 +3 204.37 -32-18-3	82 +2 Pb +4 207.2 -32-18-4	83 +3 Bi +5 208.9806 -32-18-5	Po +4 (209)	85 At (210) -32-18-7	86 0 Rn (222) -32-18-8	NOF
87 +1 Fr	88 +2 Ra	89** Ac +3	104	105		2-12-2 -32-13-2 -32-14-2 -32-15-2 -32-16-2 32-18-1 -32-18-2 -32-18-3 -32-18-4 -32-18-5 -32-18-6 -32-18-7 -32-18-8 -N-C Metallic Essential Nutrients												
(223) -18-8-1	(226) -18-8-2	(227) -18-9-2	32-10-2			N	on-M	[etall	ic Es	senti	al Nu	trien	ts					-O-P-Q
*Lanthani	ides	58 +3 Ce +4	59 +3 Pr	60 +3 Nd	61 +3 Pm	62 +2 Sm +3	63 +2 Eu +3	64 +3 Gd	65 +3 Tb	Dy	67 +3 Ho	68 +3 Er	69 +3 Tm	70 +2 Yb +3	71 +3 Lu			
2antii4iii		140.12 -20-8-2	140.9077 -21-8-2	144.24 -22-8 2	(145) -23-8-2		151.96 -25-8-2	157.25 -25-9-2	158.9254 27-8-2	162.50 . -28-8-2	164.9303 -29-8-2	167.26 -30-8-2	168.9342 -31-8-2	173.04 -32-8-2	174.97 -32-9-2			-N-O-F
**Actinid		90 +4 Th	91 +5 Pa +4	92 +3 U +4 +5	93 +3 Np+4 +5 +6	Pu +4	TJ	96 +3 Cm	97 +3 Bk +4	98 +3 Cf	99 Es	Fm	101 Md	102 No	103 Lr		: 3.	
Actinid	us	232.0381 -18-10-2	231.0359 -20-9-2	238.029 - 21-9-2	237.0482 -22-9-2	+6 (244) -24-8-2	+6 (243) -25-8-2	(247) -25-9-2	(247) -27-8-2	(251) -28-8-2	(254) -29-8-2	(257) -30-8-2	(256) -31-8-2	(254) -32-8-2	-32-9-2			-O-P-Q

Numbers in parentheses are mass numbers of most stable isotope of that element.

Sources: Handbook of Chemistry and Physics, 54th ed. and Epstein and Bloom, 2005

Clay-Metal-Organic Matter Complexes in Soil

Structures and functional groups such as those of Micro Carbon Technology®

Source: FJ Stevenson and MS Ardakani. 1972. Organic Matter Reactions Involving Micronutrients in Soils. *In* JJ Mordtvedt, PM Giordano and WL Lindsay (eds.) Micronutrients in Agriculture. Soil Science Society of America, Madison, Wisconsin.

Positively Charged Functional Groups Can React with Non-Metallic Nutrients of Plants and Microorganisms

Nitro compound -RNO₂ nitro-

Nitrate compound -RONO₂ nitrooxy-, nitroxy-

Quaternary ammonium cation -R4N⁺ ammonio-

$$R_1 \stackrel{\mathsf{R}_4}{\stackrel{\mathsf{N}^+}{\underset{\mathsf{R}_2}{\overset{\mathsf{N}}{\sim}}}} R_3$$

Isonitrile

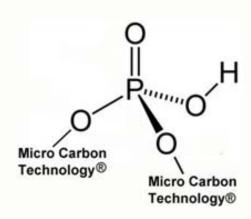
-RNC

isocyano-

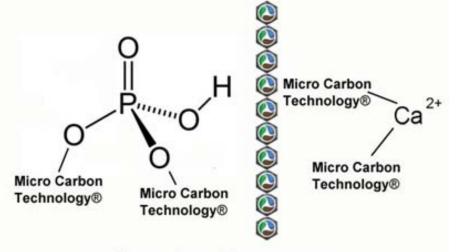
Source: Wikipedia

Examples of the Interaction of Phosphate with Organic (Carbon-containing) Substances

$$(Aliphatic glycerol)\\ H_3C(H_2C)_{16}CO_2\\ (CH_3)_3N^+\\ (Trimethyl ammonium ethanol)\\ (Aliphatic glycerol)\\ C_6H_5\\ (CH_2)_{16}CH_3\\ (CH_3)_3N^+\\ (C_6H_5)_{16}CO_2\\ (CH_3)_3N^+\\ (CH_3)_3$$

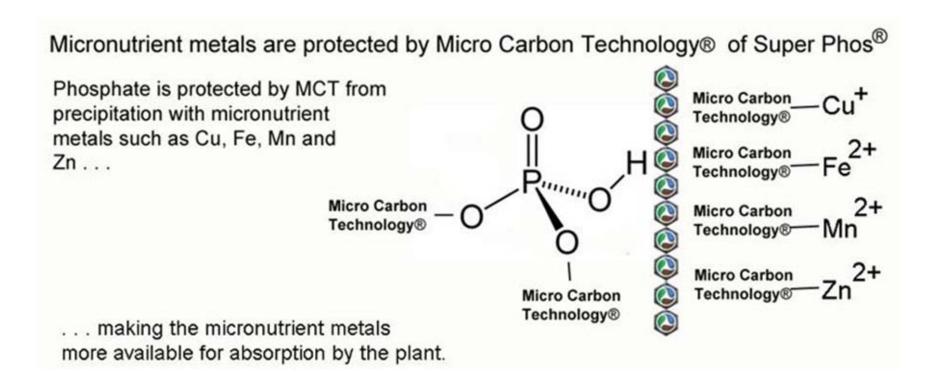

Phosphate esters*

*An ester is formed by condensation of an acid and an alcohol.



(Hypothetical) Increased Availability of P from Super Phos®, in Comparison with Conventional P Fertilizers

Phosphoric acid protected by Micro Carbon Technology® of Super Phos®


... is protected by MCT from precipitation with calcium . . .

. . . making phosphorus more available for absorption by the plant.

(Hypothetical) Increased Availability of Micronutrient Metals and P from Super Phos®, in Comparison with Conventional P Fertilizers

Some Parting Thoughts

- Micro Carbon Technology® is based on interactions of molecules of organic (carbon-containing) matter of relatively small molecular weight interacting with inorganic elements and compounds.
- The benefits of Micro Carbon Technology® result from the interactions of MCT with the other ingredients of BHN products and the target organisms (plants or microorganisms) to which the products are applied.
- The success of Micro Carbon Technology® is affected by interactions of MCT with 1) other substances being applied and 2) the target organisms and 3) many other factors in the environment.

Thank you

Source: www.lematin.ma

Global Agronomy LLC contact: +1 256-394-8305 or globalagronomy@gmail.com